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1 Assumptions and conventions

In this talk, C will be a nonsingular projective curve of genus g over a field k. (Often, we will
specialize to the case k = C. Milne states the theorem for k perfect, but I’m told that it holds
over all k.) We fix a base point p ∈ C(k).

2 The Jacobian variety

Idea: the Jacobian variety Jac of C parametrizes degree-0 line bundles on C.

There is a natural way to give Jac the structure of a scheme, and in fact it is an abelian
variety of dimension g. (Historically, this was essentially the original definition of g!) In the
case k = C, we can view Jac as a complex torus: Jac = Cn /Λ where Λ ∼= Z2g is a lattice.

Aside: moduli description of Jac. We want Jac(k) = Pic0(C). We will turn this into a functor
that we hope will be represented by Jac. The naive way to define our functor would be to de-
mand that the functor of “T -points” of Jac (i.e. morphisms T → Jac) is given by Pic0(C×k T ).
But this is bad: even on a curve like P1 with Pic0(P1) = 0 (so we want Jac = Spec k), it can
easily happen that Pic0(C ×k T ) is nontrivial. To fix this, declare that the T -points corre-
spond naturally to Pic0(C ×k T )/q∗ Pic0(T ), where q is the natural map C ×k T → T . It can
be shown that this functor is representable by an abelian variety, provided that C has a k-point.

Given the base point p, we have a natural map φ : C → Jac defined by φ(q) = O(q − p).
This is called the Abel-Jacobi map; it is a closed embedding for g ≥ 1 and an isomorphism for
g = 1.

We can soup the Abel-Jacobi map up to give us a map Cr → Jac, for any r, which is de-
fined by (x1, . . . , xr) 7→ φ(x1) + · · ·+φ(xr), using the group law of Jac. In fact, this is invariant
under permutations of the coordinates, so it factors through the rth symmetric power SrC of
C. We call this φ(r) : SrC → Jac, and call its image W r.

Abel’s theorem: for points x1, . . . , xr, y1, . . . , yr, the divisors
∑
xi and

∑
yi are linearly equiva-

lent if and only if (x1, . . . , xr) and (y1, . . . , yr) map to the same point in Jac. Equivalently, the
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fibers of φ(r) correspond exactly to the linear equivalence classes of (effective) degree-r divisors.

Let’s look at some examples. The simplest example is P1. This, of course, doesn’t have any
nontrivial degree-0 line bundles, so Jac = Spec k. The simplest nontrivial example is where C is
an elliptic curve, in which case φ : C → Jac is an isomorphism. Next, consider the case g = 2.
Here, C is a double cover of P1 branched at 6 points. Something interesting happens with φ(2)

here. From the double cover C → P1, we get a family of degree-2 divisors, parametrized by
P1, which are all linearly equivalent to each other. By Abel’s theorem, these all map to the
same point in Jac. In fact, φ(2) : S2C → Jac is exactly the blow-down along this divisor. This
generalizes: for any g, the map φ(g) : SgC → Jac is birational.

3 The Torelli theorem

Theorem (Torelli, 1914-15): the Jacobian, together with the data of a principal polarization,
determines C up to isomorphism.

The definition of a polarization depends somewhat on what sect of algebraic geometry you
belong to. To most modern people, a polarization is a choice of isogeny λ : Jac → Jac∨ that
is compatible with the dual map Jac = Jac∨∨ → Jac∨; a polarization is principal if it is an
isomorphism. Given our Abel-Jacobi map φ : C → Jac, it turns out that there is a canonical
choice of principal polarization Jac→ Jac∨ = Pic0(Jac), defined on points by:

a 7→ t∗aO(W g−1)⊗O(−W g−1). (1)

Here, ta : Jac→ Jac is translation by a.

On the other hand, more classical people (working over C) often define a polarization of the
abelian variety X = Cg /Λ to be a positive definite Hermitian form H on Cg whose imaginary
part takes integer values on Λ × Λ. Griffiths and Harris ([1]) defines a polarization to be the
first Chern class of a Hodge form ω, [ω] ∈ H2

sing(C,Z).

Milne ([2], 122-125) gives an elementary proof involving the combinatorics of the various sub-
varieties W r ⊂ Jac. Mumford ([3]) also gives sketches of four different ways to approach the
theorem.

4 Applications

Here’s a modern application of Torelli’s theorem, courtesy of Alex Youcis. Let C be a curve
over a number field K. We claim that only finitely many non-isomorphic curves C can have
first `-adic étale cohomology groups H1

ét(C,Q`) isomorphic to each other as GK-modules. The
proof works in three steps. First, it can be shown that H1(C,Q`) is naturally isomorphic to the
dual of the Tate module of the Jacobian, (V` Jac)∨. Next, a theorem of Faltings (and Tate?)
states that over a number field, abelian varieties are determined up to isogeny by their Tate
modules, and moreover that there are only finitely many abelian varieties in any given isogeny
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class. Finally, there are only finitely many possible Jacobians, so by Torelli there are only
finitely many possible curves!

5 Further results and problems

In a related direction, the Schottky problem asks which abelian varieties arise as Jacobians of
curves. In moduli terms: we have a map from the moduli space of curves to the moduli space
of abelian varieties equipped with principal polarizations. What is its image? This is still not
resolved, although there are partial results.
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